Unnormalized vs Normalized

Consider a simple model with two objectives (O1 and O2) and two alternatives (a1 and a2).

Let's assume that we provided judgments for a₁ and a₂ wrt O₁ and O₂, and those judgments are in unnormalized mode (for instance, we used ratings), so that priorities of a₁ and a₂ do not add up to 1 wrt O₁ and O₂.

```
Goal

/ \

p = 0.6  p = 0.4

O<sub>1</sub>  O<sub>2</sub>

/ \ / \

0.8  0.7  0.6  0.5

a<sub>1</sub>  a<sub>2</sub>  a<sub>1</sub>  a<sub>2</sub>
```

Here:

- For O₁: $p(a_1) + p(a_2) = 0.8 + 0.7 \neq 1$
- For O₂: $p(a_1) + p(a_2) = 0.6 + 0.5 \neq 1$

Now, let's see how we calculate the resulting (global) priorities of a1 and a2 in normalized and unnormalized modes.

1. Normalized mode:

First, we normalize priorities of a1 and a2 wrt each covering objective:

```
p(a1 wrt O1)=0.8(0.8+0.7)=0.53
p(a2 wrt O1)=0.7(0.8+0.7)=0.47
\Sigma^{=1}\Sigma^{=1}
p(a1 wrt O2)=0.6(0.6+0.5)=0.55
p(a2 wrt O2)=0.5(0.6+0.5)=0.45
\Sigma^{=1}\Sigma^{=1}
```

After that, we perform regular synthesis:

```
p(a1)=0.53\cdot0.6+0.55\cdot0.4=0.538

p(a_1)=0.53 \cdot 0.6+0.55 \cdot 0.4=0.53 \cdot 0.47\cdot0.6+0.45\cdot0.4=0.462
```

Since all clusters were normalized, global priorities are also normalized: 0.538 + 0.462 = 1

2. Unnormalized mode:

In this case, we skip the normalization step and go straight to synthesis:

```
p(a1)=0.8\cdot0.6+0.6\cdot0.55=0.72 p(a1)=0.8 \cdot 0.6 + 0.6 \cdot 0.4 = 0.72 p(a2)=0.7\cdot0.6+0.5\cdot0.4=0.62
```

As we can see, the sum of global priorities does not add up to 10.72+0.62=1.34

If we normalize global unnormalized priorities, we will get the following values:

```
p(a1)=0.537p(a_1) = 0.537
p(a2)=0.463
```

Results are close, but not quite the same.

Let's check the general case and see if the results should or should not match up.

In normalized mode:

```
pN(a1) = p_1 \cdot v_{11} + v_{21} + p_2 \cdot v_{12} + v_{22} + v
```

(normalized priority wrt O₁ and wrt O₂)

In unnormalized mode after normalization:

```
pUN(a1) = p1v11 + p2v12p1v11 + p2v12 + p1v21 + p2v22p^{un}(a_1) = \frac{p_1 v_{11} + p_2 v_{12}}{p_1 v_{21}} + p_2 v_{22}}
p_1 v_{21} + p_2 v_{22}
```

(denominator is normalization)

If results are the same in normalized mode and unnormalized after normalization, then:

```
pN(a1)=p

UN(a1)p^N(a_1) = p^{un}(a_1)
```

That is:

```
p1\cdot v11v11 + v21 + p2\cdot v12v12 + v22 = p1v11 + p2v12p1v11 + p2v12 + p1v21 + p2v22 + p1v21 + p1v21 + p2v22 + p1v21 + p
```

Let's assume $p1=p2=0.5p_1=p_2=0.5$ to simplify calculations:

This is true only if:

```
v11=v12=v21=v22=0v_{11} = v_{12} = v_{21} = v_{22} = 0
```

Conclusion: We should NOT expect results in normalized mode to match results in unnormalized mode after normalization.